
SMART CONTRACT AUDIT

SECURITY ANALYSIS REPORT
FOR

DECENTRALIZED ESPORTSDECENTRALIZED ESPORTS
(DES)(DES)

May 30th , 2022

99

Security Rating

 DES

The rating is based on the number, severity and
 latest status of detected issues

Disclaimer

This report containing confidential information which
can be used internally by the Customer, or it can be
disclosed publicly after all vulnerabilities are fixed —
upon a decision of the Customer.

SecuriChain does not provide any warranty or
guarantee regarding the absolute bug-free nature of
the technology analyzed.

The report in no way provides investment advice, nor
should be leveraged as investment advice of any sort.

 DES

Re-entrancy
Arithmetic operation
Uninitialized index variable
Unchecked zero address
Gas Optimization
Unlocked Pragma

TABLE OF CONTENTS

1. VULNERABILITY ASSESSMENT OVERVIEW
 1.1 Assigning risk levels
 1.2 Scope of work
 1.3 Checksum File
 1.4 Assessment results

 2. FINDINGS
 2.1 List of Vulnerabilities
 2.2 Details

 3. CONCLUSION
 Appendix 1. Assessment list
 Appendix 2. Risk rating

 DES

VULNERABILITY ASSESSMENT
OVERVIEW

1.1. ASSIGNING RISK LEVELS
The Auditor categorizes each of the detected vulnerabilities
into 4 levels (High, Medium, Low, and Info) according to the
degree of the risks it may cause in the Customer’s operations.
For details of the rating standards, please refer to “Appendix
2 Risk Rating.” Please also note that the assessment of the
findings is based on Auditor’s own perspective and may
contain speculations in some cases.

 DES

Project Name Decentralized ESports

Platform Ethereum

Languages Solidity

Methods
Automation scan, architecture review, functional testing,

manual code review

Repository
https://github.com/decentralized-

esports/smartcontracts/tree/919dbe419336540c12fcc26a3
d8ea4e4715eaa32

Documents

Timelines May 23th, 2022 – May 30th, 2022

1.2. SCOPE OF WORK

 DES

No. Hash Name

1 fc135a2fad7a46ca735e9c3826a700b3dcffafc0
DecentralizeESp

ortToken.sol

2 fc76286936ee15989a2bb91d79ef12603ad1c9bf EventEmitter.sol

3 3141ebbc9d1092158a2330448d0db97b1781eef0 Ladder.sol

4 ada697aea74b0ced03f210786f8b725d3dc5de42 Tournament.sol

5 11851c26241f50f5c4fa27ba4350ef47ebb190e5
TournamentFactor

y.sol

1.3. CHECKSUM FILE
SCOPE

 DES

RATE DESCRIPTION

96-100
No vulnerabilities were found or all
detected ones have been resolved

70-95
Unresolved Low-level vulnerabilities

exist

40-69
Unresolved Medium-level

vulnerabilities exist

0-39
Unresolved High-level vulnerabilities

exist

1.4. ASSESSMENT RESULTS

For more information on criteria
for risk rating, refer to Appendix.2

 DES

ID Risk Level Name Amount Status

SC1 High Re-entrancy 1 Resolved

SC2 Medium Arithmetic operations 2 Resolved

SC3 Medium
Uninitialized index

variable
3 Resolved

SC4 Medium Unchecked zero address 1 Resolved

SC5 Low Gas optimization 1 Resolved

SC6 Information Unlocked Pragma 1 Resolved

FINDINGS
2.1 List of Vulnerabilities

The detected vulnerabilities are listed below. Please refer to
"Appendix.2 Risk Rating" for the risk assessment method.

Vulnerabilities distributed in the smart contract

For rating each vulnerability,
 refer to Appendix 2.

2.1 Details

High: 1

[1] Re-entrancy

� Overview

� Possible Impacts

The contract removes reward-claiming address “msg.sender”
from “userRewards” after transferring money. This is dangerous
as “msg.sender” might contain a callback function implemented
which re-call “claimRewards” whenever a money-transferring
event occurs.

� Recommendation

(Blurred image of the code snippet in the public report due to the Customer's code being in the
private repository)

The attacker can withdraw all money in this contract.

Remove “msg.sender” from “userRewards” before making
money-transferring call.

� Location
Ladder.claimRewards() #L367

Medium: 2

� Overview

[2] Arithmetic operation

Multiplication is performed after division which can lead to
unwanted result

(Blurred image of the code snippet in the public report due to the Customer's code being in the
private repository)

 DES

� Impossible Impacts

� Recommendation

� Location

(Blurred image of the code snippet in the public report due to the Customer's code being in the
private repository)

“pfeeRate” and “tfeeRate” are divided by 100 while their
value falls between 0 and 100; therefore, the result of the
division is always zero.

Platform and tournament will not receive withdraw fee and
reward-claiming fee.

Perform multiplication before division.

Tournament.withDrawTournament() #L391-#395
Tournament.withDrawTournament() #L736-#738

 DES

� Overview

Medium: 3

(Blurred image of the code snippet in the public report due to the Customer's code being in the
private repository)

[3] Uninitialized index variable

Local variables should be initialized before being used.

� Impossible Impacts

� Recommendation

� Location

Contract might perform unwanted behaviors.

Initialize variables before using.

Ladder.addToBlackListMultiple() #L151
Ladder.removeFromBlackList() #L157
Tournament.addToBlackListMultiple() #L486

� Overview

Medium: 1

(Blurred image of the code snippet in the public report due to the Customer's code being in the
private repository)

[4] Unchecked zero address

� Impossible Impacts

� Recommendation

� Location

 “pWallet” variable is not checked for zero value

Contract might perform unexpected behaviors

Check variable “pWallet” for zero value.

Ladder.initialize() #L139

� Recommendation

� Location

� Posible Impacts

[5] Gas Optimization
 Low: 1
� Overview

(Blurred image of the code snippet in the public report due to the Customer's code being in the
private repository)

Struct fields are implemented using unnecessarily large data type.

The reason is that “pFeeRate” and “gFeeRate” contain numbers
that are less than 100 and more than 0.

Gas is wasted to verify a transaction.

Use type “uint8”.

Ladder.LadderInfo #L86,87

� Recommendation

� Location

[6] Unlocked Pragma
 Information: 1

� Overview

Contracts should be deployed with the same compiler version
and flags that they have been thoroughly tested. Locking the
pragma helps to ensure that contracts do not accidentally get

deployed using.

� Posible Impacts

An outdated compiler version that might introduce bugs
that affect the contract system negatively.

Lock the pragma version and also consider known bugs
(https://github.com/ethereum/solidity/releases) for the
chosen compiler version.
Pragma statements can be allowed to float when a contract
is intended for consumption by other developers, as in the case
of contracts in a library or EthPM package.
Otherwise, the developer would need to manually update
the pragma in order to compile locally.

DES:: All Contract
DES:: All Contract

CONCLUSION

This document, and its appendices, represent our best effort
to capture the results of several days of intensive activity.

Smart contracts within the scope were analyzed with static

analysis tools and manually reviewed.

Please feel free to direct any questions on this assessment to:
audit@securichain.io

 DES

 CHECKLIST

 Integer Overflow/Underflow Integer Overflow/Underflow

Arithmetic operations Integer Truncation Integer Sign

 Wrong Operator

Re-entrancy

Bad Randomness

Timestamp Dependence Blockhash

Front running

DDos

DOS By Complex Fallback
Function

DOS By Gaslimit

DOS By Non-existent Address

Or Malicious Contract

Gas usage Invariants in Loop
Invariants State Variables Are

Not Declared Constant

Unsafe external calls

Business Logics Review

Access Control &
Authorization

Replay Attack
Use tx.origin For
Authentication

Logic Vulnerability

APPENDIX 1: ASSESSMENT LIST

Risk Level Explain Example Types

High

The issue puts a large number of users’
sensitive information at risk, or is reasonably

likely to lead to catastrophic impact for client’s
reputation or serious financial implications for

client and users.

Re-entrancy
Front running

DDos
Bad Randomness

Logic Vulnerability
Arithmetic operations

Medium

The issue puts a subset of users’ sensitive
information at risk, would be detrimental for the
client’s reputation if exploited, or is reasonably

likely to lead to moderate financial impact.

Access Control
Unsafe external calls

Business Logics Review
Logic Vulnerability

Low

The risk is relatively small and could not be
exploited on a recurring basis, or is a risk that

the client has indicated is low impact in view of
the client’s business circumstances.

Gas Usage

Info

The issue does not pose an immediate risk, but
is relevant to security best practices or Defense

in Depth.

Blockhash

APPENDIX 2: LIST RATING

 DES

