
SMART CONTRACT AUDIT

SECURITY ANALYSIS REPORT
FOR

 EPIC WAREPIC WAR

August 2nd , 2022

95

Security Rating

Epic War

The rating is based on the number, severity and
 latest status of detected issues

Disclaimer

This report containing confidential information which
can be used internally by the Customer, or it can be
disclosed publicly after all vulnerabilities are fixed —
upon a decision of the Customer.

SecuriChain does not provide any warranty or
guarantee regarding the absolute bug-free nature of
the technology analyzed.

The report in no way provides investment advice, nor
should be leveraged as investment advice of any sort.

Epic War

Unauthorized execution
Re-entrancy
Business Logic
Unchecked condition
Gas optimization
Unlocked Pragma

TABLE OF CONTENTS

1. VULNERABILITY ASSESSMENT OVERVIEW
 1.1 Assigning risk levels
 1.2 Scope of work
 1.3 Checksum File
 1.4 Assessment results

 2. FINDINGS
 2.1 List of Vulnerabilities
 2.2 Details

 3. CONCLUSION
 Appendix 1. Assessment list
 Appendix 2. Risk rating

Epic War

VULNERABILITY ASSESSMENT
OVERVIEW

1.1. ASSIGNING RISK LEVELS
The Auditor categorizes each of the detected vulnerabilities
into 4 levels (High, Medium, Low, and Info) according to the
degree of the risks it may cause in the Customer’s operations.
For details of the rating standards, please refer to “Appendix
2 Risk Rating.” Please also note that the assessment of the
findings is based on Auditor’s own perspective and may
contain speculations in some cases.

Epic War

Project Name EPIC WARS

Platform Ethereum

Languages Solidity

Methods
Automation scan, architecture review, functional testing,

manual code review

Repository

https://github.com/Epic-Wars/game-
contract/tree/0d2cdbce730edb6541c1f16e476de902a752e

df3
https://github.com/Epic-Wars/mystery-box-

contract/tree/b320a403ad035a6cebf809fe4e0ad896bf85
017a

Documents

Timelines May 6th 2022 – Jun 15th 2022

1.2. SCOPE OF WORK

Epic War

No. Hash Name

1 3bf3bcc5fcc8a9d7c555ae99d127f461a2aea5e8
mystery-box-contract/

EpicWarNFT.sol

2
bd01a782a3e71224ea4d4f3db7706d383ec8b54

5
mystery-box-contract/

EpicWarBox.sol

3 451d1db90af5f770e7bdfc23fd5beaf77eaea25e
mystery-box-contract/

EpicWarNumber.sol

4 fe63ef5eb4661c86a5744c3f91db6fb80a7f7852
mystery-box-contract/

TokenTest.sol

5 a3a4e0295c29a1a5676290510ca6a02c5f8b0faa
game-contract

/EpicWarNFTTest.sol

6 bb2dd76250631963aef8c834aa69d56c84f3f3eb
game-contract
/NFTEscrow.sol

7 fe63ef5eb4661c86a5744c3f91db6fb80a7f7852
game-contract
/TokenTest.sol

8 e7ab4afe642260ac6c92575e46a08a13620f3513
game-contract

/TransferHelper.sol

9 b9a728eb3d6eac741d08ea45fda3fe54494806fc
game-contract

/interface/INFTEpicWar.sol

10 9f1c433c84ac01e4def589a49a85e43cdce3a957
game-contract

/interface/INFTEscrow.sol

SCOPE

1.3. CHECKSUM FILE

RATE DESCRIPTION

96-100
No vulnerabilities were found or all
detected ones have been resolved

70-95
Unresolved Low-level vulnerabilities

exist

40-69
Unresolved Medium-level

vulnerabilities exist

0-39
Unresolved High-level vulnerabilities

exist

1.4. ASSESSMENT RESULTS

For more information on criteria
for risk rating, refer to Appendix.2  

Epic War

ID Risk Level Name Amount Status

SC1 High Unauthorized execution 1 Resolved

SC2 Medium Re-entrancy 1 Resolved

SC3 Medium Business Logic 1 Acknowledged

SC5 Low Unchecked condition 1 Resolved

SC6 Low Gas optimization 5 Resolved

SC7 Information Unlocked Pragma Resolved

FINDINGS
2.1 List of Vulnerabilities

The detected vulnerabilities are listed below. Please refer to
"Appendix.2 Risk Rating" for the risk assessment method.

Vulnerabilities distributed in the smart contract

For rating each vulnerability,
 refer to Appendix 2.

High: 1

 [1] Unauthorized execution

� Overview

� Recommendation

� Location

There is no check on the authorization of the call to “createToken”
function which leads to unauthorization execution.

Anyone can mint new token which leads to the loss of its value.

� Posible Impacts

Add “onlyOwner” modifier to the function implementation

(Blurred image of the code snippet in the public report due to the Customer's code being in the
private repository)

Epic War

Game-contract/EpicWarNFTTest.createToken() #L46

2.1 Details

Medium: 1

[2] Re-entrancy

� Overview

(Blurred image of the code snippet
in the public report due to the
Customer's code being in the
private repository)

Function buyBox() calls function _safeMint() to mint a new box
(line 209):

Then function _safeMint() calls private function
_checkOnERC721Received() to check if the box was successfully
minted:

2.1 Details

� Possible Impacts

� Recommendation

� Location

(Blurred image of the code snippet
in the public report due to the
Customer's code being in the
private repository)

Inside _checkOnERC721Received() function, a call to
_to.onERC721Received() is made:

(Blurred image of the code snippet
in the public report due to the
Customer's code being in the
private repository)

The problem is, the msg.sender contract might have a function
called onERC721Received() implemented which re-call
EpicWarBox.buyBox() function, causing re-entrancy state.

The attacker can buy more boxes than he is allowed.

Use “_mint” instead of “_safeMint”.

Mystery-box-contract/EpicWarBox.buyBox() #L209

2.1 Details

Medium: 1

[3] Business Logic

� Overview

(Blurred image of the code snippet in the public report due to the Customer's code being in the private repository)

No detailed description according to customer’s request.

Epic War

Medium: 1

[4] Unchecked condition

� Overview

(Blurred image of the code snippet
in the public report due to the
Customer's code being in the
private repository)

Function createEvent() does not check for the validity of
variable _openBoxTime’s value, e.g. its value can be less than
startTime’s.

� Possible Impacts

� Recommendation

New eventInfo’ misconfigured variables can lead to
unexpected behaviors of the contract

Add condition-checking requirements.

� Location

Mystery-box-contract/EpicWarBox.createEvent() #L117-158

Medium: 5

[5] Gas Optimization

� Overview

(Blurred image of the code snippet in the public report due to the Customer's code being in the
private repository)

Some struct fields are implemented using unnecessarily large
data type.

� Possible Impacts

� Recommendation

� Location

Struct fields:
• EventInfo.boxPrice
• EventInfo.maxBuy
• EventInfo.boxCount
• BoxList.quantity
• BoxList.bought

Theoretically, those values can be that large, but in reality we can
save gas usage by using smaller data type.

Mystery-box-contract/EpicWarBox.EventInfo.boxPrice #L34

Mystery-box-contract/EpicWarBox.EventInfo.maxBuy #L38

Mystery-box-contract/EpicWarBox.EventInfo.boxCount #L43

Mystery-box-contract/EpicWarBox.BoxList.quantity #L47

Mystery-box-contract/EpicWarBox.BoxList.bought #L48

Use smaller data type like uint32, uint 64, uint128 depending
on their estimated values.

Gas is wasted to verify a transaction.

Information: 1

[6] Unlocked Pragma

� Overview

(Blurred image of the code snippet
in the public report due to the
Customer's code being in the
private repository)

Contracts should be deployed with the same compiler version
and flags that they have been thoroughly tested. Locking the
pragma helps to ensure that contracts do not accidentally get
deployed using.

� Possible Impacts

� Recommendation

� Location

An outdated compiler version that might introduce bugs that
affect the contract system negatively.

Lock the pragma version and also consider known bugs
(https://github.com/ethereum/solidity/releases) for the
chosen compiler version.
Pragma statements can be allowed to float when a contract
is intended for consumption by other developers, as in the
case with contracts in a library or EthPM package. Otherwise,
the developer would need to manually update the pragma in
order to compile locally.

Mystery-box-contract:: All Contracts

Game-contract:: All Contracts

CONCLUSION

This document, and its appendices, represent our best effort
to capture the results of several days of intensive activity.

Smart contracts within the scope were analyzed with static

analysis tools and manually reviewed.

Please feel free to direct any questions on this assessment to:
audit@securichain.io

Epic War

 CHECKLIST

 Integer Overflow/Underflow Integer Overflow/Underflow

Arithmetic operations Integer Truncation Integer Sign

 Wrong Operator

Re-entrancy

Bad Randomness

Timestamp Dependence Blockhash

Front running

DDos

DOS By Complex Fallback
Function

DOS By Gaslimit

DOS By Non-existent Address

Or Malicious Contract

Gas usage Invariants in Loop
Invariants State Variables Are

Not Declared Constant

Unsafe external calls

Business Logics Review

Access Control &
Authorization

Replay Attack
Use tx.origin For
Authentication

Logic Vulnerability

APPENDIX 1: ASSESSMENT LIST

Risk Level Explain Example Types

High

The issue puts a large number of users’
sensitive information at risk, or is reasonably

likely to lead to catastrophic impact for client’s
reputation or serious financial implications for

client and users.

Re-entrancy
Front running

DDos
Bad Randomness

Logic Vulnerability
Arithmetic operations

Medium

The issue puts a subset of users’ sensitive
information at risk, would be detrimental for the
client’s reputation if exploited, or is reasonably

likely to lead to moderate financial impact.

Access Control
Unsafe external calls

Business Logics Review
Logic Vulnerability

Low

The risk is relatively small and could not be
exploited on a recurring basis, or is a risk that

the client has indicated is low impact in view of
the client’s business circumstances.

Gas Usage

Info

The issue does not pose an immediate risk, but
is relevant to security best practices or Defense

in Depth.

Blockhash

APPENDIX 2: LIST RATING

Epic War

