
SMART CONTRACT AUDIT

SECURITY ANALYSIS REPORT
FOR

 MONSTERRAMONSTERRA

May 27th , 2022

96

Security Rating

 Monsterra

The rating is based on the number, severity and
 latest status of detected issues

DISCLAIMER

This report containing confidential information which
can be used internally by the Customer, or it can be
disclosed publicly after all vulnerabilities are fixed —
upon a decision of the Customer.

SecuriChain does not provide any warranty or
guarantee regarding the absolute bug-free nature of
the technology analyzed.

The report in no way provides investment advice, nor
should be leveraged as investment advice of any sort.

 Monsterra

Anyone can mint tokens
Anyone can mint NFT
Reentrancy Vulnerabilities
Business Logic Vulnerability
Bad Randomness
Check the wrong lending conditions
Anyone Call Cancel Landing
Misbehaving Function
Misbehaving Function
Missing Zero Address Validation
Uninitialized State Variables
Uninitialized State Variables
Misbehaving Function
Unused State Variable
A public function that could be declared external
Unnecessary override
Unlocked Pragma

TABLE OF CONTENTS
1. VULNERABILITY ASSESSMENT OVERVIEW

 1.1 Assigning risk levels
 1.2 Scope of work
 1.3 Checksum File
 1.4 Assessment results

 2. FINDINGS
 2.1 List of Vulnerabilities
 2.2 Details

 3. CONCLUSION
 Appendix 1. Assessment list
 Appendix 2. Risk rating

 Monsterra

VULNERABILITY ASSESSMENT
OVERVIEW

1.1. ASSIGNING RISK LEVELS
The Auditor categorizes each of the detected vulnerabilities
into 4 levels (High, Medium, Low, and Info) according to the
degree of the risks it may cause in the Customer’s operations.
For details of the rating standards, please refer to “Appendix
2 Risk Rating.” Please also note that the assessment of the
findings is based on Auditor’s own perspective and may
contain speculations in some cases.

 Monsterra

Project Name Monsterra Contract

Platform Ethereum

Languages Solidity

Methods
Automation scan, architecture review, functional testing,

manual code review

Repository
https://github.com/sota-finance/game-market-

contracts/tree/develop
commit : af89162b1eb087baab807dc7ed363cd70a6cc90d

Documents None

Timelines May 14th, 2022 – May 27th, 2022

1.2. SCOPE OF WORK

 Monsterra

No. Hash Name

1
31bee091ae64929164a795e0c5c68366ba7c4f48df41fd77

ad642c9eddce9187
GameERC721.sol

2
8ff6500a967cb817f9a854816dcd5808e457fc9219364e9

0fbcad228d957180c
GameMarketPay

ment.sol

3
c675cd4cbeac95f3e3ab6a8f10f91534ea72f1f2ef5b59df91

41c82d69aa2526
GameMarket.sol

4
1147f558792d966f9f5a1b8b333d4e5fa521b1f4255cfea3ab

f51a828f274403
Manager.sol

5
368782941c80e6d245299719adc94c85cd7823e1cd621ae

ff17671d8a64a94bb
MiniGameContra

ct.sol

6
a3618b24f0fbad68448991be52ce4d413ca58fb5b2c95cdf

a8313af24d12d6a9
MockERC721.sol

7
b5ad859da71ec400c911f861338a3554cb1f817ce7bd372c4

cdc35da37b6561d
MockMON.sol

8
1d50b918a19ddfc64e4de90fb31abd1371d195386a06c8e8a4d4

cff38685a80d
MonsConvertCont

ract.sol

1.3. CHECKSUM FILE
GAME-MARKET-CONTRACTS-DEVELOP

 Monsterra

No. Hash Name

9
89d7179873e677d23abbb2b1782d2e9ad512c719bcf96ee1

fa9bc66658e71d8c
MonsterraLandN

FT.sol

10
89d7179873e677d23abbb2b1782d2e9ad512c719bcf96ee1

fa9bc66658e71d8c
MonsterraMonst

erNFT.sol

11
64a0680c3da02da48039905a7016d51d7ce21e9ae81542

e1f0988fe2b24ddd6d
MonsterraSkillNF

T.sol

12
5e655d0f0acc46f4c73e4cbe82294c6d7c7eab166cd29ef

38d53587575e36a4c
MonsterraSoulC

oreNFT.sol

13
a80d84230b96993b97a63484f26f9ea06c635ba95ae93

49e25344247a537552e
MysteryBoxMana

ger.sol

14
e09131bcd869b90f42302323fb86f2132efa43487d8ddcf

49149784985bee802
MysteryBoxNFT.

sol

15
8926e347994db8dc0d34ce647b2fa224ab16cb2adb5d0

064bb355889965c17e2
Token.sol

 Monsterra

RATE DESCRIPTION

96-100
No vulnerabilities were found or all
detected ones have been resolved

70-95
Unresolved Low-level vulnerabilities

exist

40-69
Unresolved Medium-level

vulnerabilities exist

0-39
Unresolved High-level vulnerabilities

exist

1.4. ASSESSMENT RESULTS

For more information on criteria
for risk rating, refer to Appendix.2

 Monsterra

ID Risk Level Name Amount Status

SC1 High Anyone can mint Tokens 5 Resolved

SC2 High Anyone can mint NFT 1 Resolved

SC3 High
Reentrancy

Vulnerabilities
7 Resolved

SC4 High
Business Logic

Vulnerability
1 Resolved

SC5 Medium
Check the wrong lending

conditions
1 Resolved

SC6 Medium
Anyone can cancel

Landing
1 Resolved

SC7 Medium Misbehaving Function 1 Resolved

SC8 Medium Misbehaving Function 1 Resolved

SC9 Medium
Missing Zero Address

Validation
10 Resolved

FINDINGS
2.1 List of Vulnerabilities

The detected vulnerabilities are listed below. Please refer to
"Appendix.2 Risk Rating" for the risk assessment method.

Vulnerabilities distributed in the smart contract

ID Risk Level Name Amount Status

SC10 Medium
Uninitialized State

Variables
6 Acknowledged

SC11 Medium Bad Randomness 1 Resolved

SC12 Low
Uninitialized State

Variables
1 Resolved

SC13 Low Misbehaving Function 1 Resolved

SC14 Low Unused State Variable 7 Acknowledged

SC15 Low
Public function that
could be declared

external
20 Acknowledged

SC16 Low Unnecessary override 1 Resolved

SC17 Information Unlocked Pragma 1 Resolved

For rating each vulnerability,
 refer to Appendix 2.

2.1 Details

High: 1

[1] Anyone can mint Tokens

� Overview

� Location

(Blurred image of the code snippet
in the public report due to the
Customer's code being in the
private repository)

Of all Monstera's mint() token functions, the mint() function is
external, so anyone can mint as many tokens as they want..
It can be exploited by bad guys, creating too many tokens, and at
the same time leading to the loss of token value

Example: MockMON.mint()#L11-13

MockMON.mint()#L11-13

MockERC721.mint()#L10-12
Token.mintToken()#L11-L13

ItemsTest.mintToken()#l11-L13

ItemsTest2.mintToken()#l11-L13

�PoC:https://testnet.bscscan.com/token/0x8e62425
c4f951ad95c0f10408f585bba3bd0d890

� Recommendation

Add the onlyOwner modifier for owner-only functions.

High: 1

 [2] Anyone can mint NFT

� Overview

� Recommendation

� Location

Missing onlyOwner check in AdminMintNFT() function, so anyone
can call it.
It can be exploited by bad guys, creating too many tokens, and at
the same time leading to the loss of token value.

MonsterraSkillNFT.AdminMintNFT()#L20

Add the onlyOwner modifier for owner-only functions.

(Blurred image of the code snippet in the public report due to the Customer's code being in
the private repository)

 Monsterra

� Overview

[3] Reentrancy Vulnerabilities

High: 7

(Blurred image of the code snippet in the public report due to the Customer's code being in the private repository)

Paying before updating the value of variables related to the
remaining amount can lead to the risk of re-entrancy attack.
The attacker can withdraw all the money in the contract.
Example: GameMarket.cancelBid()#L624-#642

The _paid() function paid the token to the caller and then updated
the bid.quatity = 0.

GameMarket.cancelBid()#L624-#642
GameMarket.buy()#L292-315
GameMarket.UpdateBid()#L644-704
GameMarket.acceptBid()#L706-779
GameMarket.cancelOrder()#L394-420
GameMarket.updateOrder()#L347-392
GameMarket.buyBundle()#L488-538

� Location

You can use
ReentrancyGuardUpgradeable(@openzeppelin/contracts-
upgradeable/security/ReentrancyGuardUpgradeable.sol). Using
nonReentrant with token sending functions.

� PoC:
https://testnet.bscscan.com/tx/0xaa67f71c495bd96b9a26434
a17d7f8dbdbe2f61b7b708e0cb18099245e091642

� Recommendation

 Monsterra Monsterra

� Recommendation

� Location

[4] Business Logic Vulnerability

� Overview

(Blurred image of the code snippet in the public report due to the Customer's code being in the private repository)

High: 1

The lendNFT() function transfers the token to the caller (rent)
but has no strings attached, other than that the tenant only
pays the rental fee (lendNft.fee).

Tenants can own the product at a low cost (lendingNft.fee)

GameERC721.lendNFT()#L87

Check the logic of lending.

 Monsterra

� Recommendation

� Location

[5] Bad Randomness

� Overview

(Blurred image of the code snippet in the public report due to the Customer's code being in the private repository)

High: 1

The genrand_int32() function generates an unsafe seed, the use
of a block.difficulty, block.timestamp is predictable.

Using Chainlink VRF

MysteryBoxManager.genrand_int32()#L79-80

 Monsterra

� Recommendation

� Location

[6] Check the wrong lending conditions

� Overview

(Blurred image of the code snippet in the
public report due to the Customer's code
being in the private repository)

Medium: 1

Check for incorrect rental condition. The variable lendNft.isLended
is initialized to false, so require(lendNft.isLended, "already-
lended") always returns false.

GameERC721.lendNFT#L90

� Recommendation

� Location

[7] Anyone Call Cancel Landing

� Overview

(Blurred image of the code snippet in the public report due to the Customer's code being in the private repository)

Medium: 1

The cancelLanding() function is external and does not impose
any restrictions on the caller, so anyone can cancel any _lendId

Add owner to check step.

GameERC721.cancelLanding()#L78

 Monsterra

� Recommendation

� Location

[8] Misbehaving Function

� Overview

(Blurred image of the code snippet in the public report due to the Customer's code being in the private repository)

Medium: 1

The address is added to the Whitelist using the
addWhiteListAddress() function, but the added address is
msg.sender

The code can be modified as follows:

MysteryBoxManager.addWhiteListAddress()#L185

� Recommendation

� Location

[9] Misbehaving Function

� Overview

(Blurred image of the code snippet in the public report due to the Customer's code being in the private repository)

Medium: 1

The code can be modified as follows:

The removeWhiteListAddress() function is used to remove the
addresses in the Whitelist, but the removed address is msg.sender

MysteryBoxManager.removeWhiteListAddress()#L198

� Recommendation

� Location

[10] Missing Zero Address Validation

� Overview

(Blurred image of the
code snippet in the
public report due to the
Customer's code being
in the private
repository)

Medium: 1

Calling a function without parameters can result in Solidity
assigning a value itself (ex: address is set to 0). Lack of checking
for non-zero addresses can lead to asset loss when performing
transactions or setting payment addresses, etc.
Example:
GameMarket.setGameMarketPaymentContract()._gameMarket
PaymentContract#L426

If you accidentally call the setGameMarketPaymentContract()
function without passing any parameters, the payment address
may be set to 0

Check that the address is not zero.

GameMarket.setGameMarketPaymentContract()._gameMarketPay
mentContract#L426
GameMarket.withdrawFunds()._beneficiary#L892-911

MiniGameContract.withdrawFunds()._beneficiary()L255-275
MonsterraConvertContract.initialize()#L57 (all parameter)
MonsterraConvertContract.updateSignAddress()._address#
L84
MonsterraConvertContract.updateBinanceNFTsContract()._
address#L88
MonsterraConvertContract.updateMysteryBoxContract()._a
ddress#L92
MysteryBoxManager.setMysteryBoxContract()._contractAd
dress#L220
MysteryBoxManager.withdrawFunds()._beneficiary#L236
GameERC721.lendNFT().createLendingNFT#L90

 Monsterra

� Recommendation

� Location

[11] Uninitialized State Variables

� Overview

(Blurred image of the code snippet in the public report due to the Customer's code being in the private repository)

Medium: 6

Variables are initialized but not assigned a value, which leads to
incorrect contract logic

Example: MiniGameConTract.threeCardPockerGameSeason#L21

threeCardPockerGameSeason is declared but not initialized. As a
result, migrationMiniGameData()#l123-127 will never work and
MiniGameSeason[totalGame] will always be 0.

Reconsider variable initialization

MiniGameConTract.threeCardPockerGame#L20
MiniGameConTract.threeCardPockerGameSeason#L21
MiniGameConTract.totalCoefficientFee#L24
MiniGameConTract.totalUser#L25
MysteryBoxManager.listItemsCalculate#L26
GameMarket._acceptBid().order.isOnsale#L728

� Recommendation

� Location

[12] Uninitialized State Variables

� Overview

(Blurred image of
the code snippet in
the public report
due to the
Customer's code
being in the private
repository)

Low: 1

After each time addContractSupport() is called, the
totalContractSupport variable is incremented by 1.

However, the current treatment: totalContractSupport.add(1) as
the totalContractSupport variable is not incremented by 1 as
intended.

The code can be modified as follows:

GameMarketPayment.addContractSupport()#L72

[13] Misbehaving Function

� Overview

(Blurred image of the code snippet in the public report due to the Customer's code being in the private repository)

Low: 1

Setting the wrong ItemMapBundle value leads to the case that
NFTs purchased from the bundle will fail at the acceptBid().

When buying a bundle, the value at ItemMapBundle is set to 0 by
calculating the hash from the arguments:
� bundle.listTokenAddress[index]
� bundle.listTokenId[index]
� msg.sender

� Recommendation

� Location

(Blurred image of the code snippet in the public report due to the Customer's code being in the private repository)

In the 3rd argument, instead of getting the bundle owner's
address, the program takes the bundle buyer's address
(msg.sender) leading to the wrong value.

As a result, the line GameMarket.acceptBid()#L730 returns a false
result.

Change the msg.sender at the line GameMarket.buyBundle()#L519
to the address of the bundle owner.

GameMarket.buyBundle()#L519

� Recommendation

� Location

[14] Unused State Variable

� Overview

(Blurred image of the code
snippet in the public report due to
the Customer's code being in the
private repository)

Low: 7

There is a fee to store and change data on the blockchain.
Declared but unused variables waste gas.
Example: GameMarket._withdrawAmount#L900

The variable _withdrawAmount at line #L900 is not used for any
purposes.

Delete unnecessary variables if they're not in use.

GameMarket._version#L72 (declared but not used)
GameMarket._withdrawAmount#L900
GameMarketPayment.maxUint#L14
MiniGameContract._withdrawAmount#L263
MonsConvertContract.randomId#L27
MysteryBoxNFT.totalBuy#L21
MysteryBoxManager._withdrawAmount#L239

� Recommendation

� Location

[15] Public function that could be declared external

� Overview

(Blurred image of the code snippet in the public report due to the Customer's code being in the private repository)

Low: 20

Public functions that are never called by the contract should
be declared external to save gas.
Example: GameMarket.isAcceptable()#L856

Use the external attribute for functions never called from the
contract.

GameMarket.initialize()#L125
GameMarketPayment.initialize()#L34
GameMarket.getBundleInfo()#L835
GameMarket.isAcceptable()#L856
Manager.pause()#L9
Manager.unPause()#L13
MonsConvertContract.initialize()#L57

MonsterraMonsterNFT.initialize()#L14
MonsterraSoulCoreNFT.initialize()#L14
MonsterraLandNFT.initialize()#L14
MonsterraSkillNFT.initialize()#L14
MiniGameContract.initialize()#L55
MiniGameContract.isAddressJoinedSeasonTCP()#L156
MiniGameContract.remainingTurnCanBuy()#236
MysteryBoxManager.initialize()#64
MysteryBoxManager.genrand_int32()#70
MysteryBoxManager.getTotalBuy()#203
MysteryBoxManager.getCalculate()#212
MysteryBoxManager.isCanBuyBox()#223
MysteryBoxNFT.initialize()#L24

 Monsterra

[16] Unnecessary override

� Overview

(Blurred image of the code snippet in the public report due to the Customer's code being in the private repository)

Low: 3

It is unnecessary and wasteful to override some transfer functions
just to check for isLockTransfer [tokenId].

� Recommendation

� Location

Write a modifier function to check
require(!isLockTransfer[tokenId], "tokenId-locked").
For functions that need to check isLockTransfer, add this modifier

GameERC721.safeTransferFrom()#L104-115
GameERC721.safeTransferFrom()#L117-130
GameERC721.transferFrom()#L132-144

 Monsterra

[17] Unlocked Pragma

� Overview

(Blurred image of the code snippet in the public report due to the Customer's code being in the private repository)

Info: 1

Contracts should be deployed with the same compiler version and
flags that they have been thoroughly tested. Locking the pragma
helps to ensure that contracts do not accidentally get deployed
using.

An outdated compiler version that might introduce bugs that
affect the contract system negatively.

Lock the pragma version and also consider known bugs
(https://github.com/ethereum/solidity/releases) for the chosen
compiler version.
Pragma statements can be allowed to float when a contract is
intended for consumption by other developers, as in the case of
contracts in a library or EthPM package. Otherwise, the developer
would need to manually update the pragma to compile it locally.

� Recommendation

Monsterra::All Contract

� Location

CONCLUSION

This document, and its appendices, represent our best effort
to capture the results of several days of intensive activity.

Smart contracts within the scope were analyzed with static

analysis tools and manually reviewed.

Please feel free to direct any questions on this assessment to:
audit@securichain.io

 Monsterra

 CHECKLIST

 Integer Overflow/Underflow Integer Overflow/Underflow

Arithmetic operations Integer Truncation Integer Sign

 Wrong Operator

Re-entrancy

Bad Randomness

Timestamp Dependence Blockhash

Front running

DDos

DOS By Complex Fallback
Function

DOS By Gaslimit

DOS By Non-existent Address

Or Malicious Contract

Gas usage Invariants in Loop
Invariants State Variables Are

Not Declared Constant

Unsafe external calls

Business Logics Review

Access Control &
Authorization

Replay Attack
Use tx.origin For
Authentication

Logic Vulnerability

APPENDIX 1: ASSESSMENT LIST

Risk Level Explain Example Types

High

The issue puts a large number of users’
sensitive information at risk, or is reasonably

likely to lead to catastrophic impact for client’s
reputation or serious financial implications for

client and users.

Re-entrancy
Front running

DDos
Bad Randomness

Logic Vulnerability
Arithmetic operations

Medium

The issue puts a subset of users’ sensitive
information at risk, would be detrimental for the
client’s reputation if exploited, or is reasonably

likely to lead to moderate financial impact.

Access Control
Unsafe external calls

Business Logics Review
Logic Vulnerability

Low

The risk is relatively small and could not be
exploited on a recurring basis, or is a risk that

the client has indicated is low impact in view of
the client’s business circumstances.

Gas Usage

Info

The issue does not pose an immediate risk, but
is relevant to security best practices or Defense

in Depth.

Blockhash

APPENDIX 2: LIST RATING

 Monsterra

